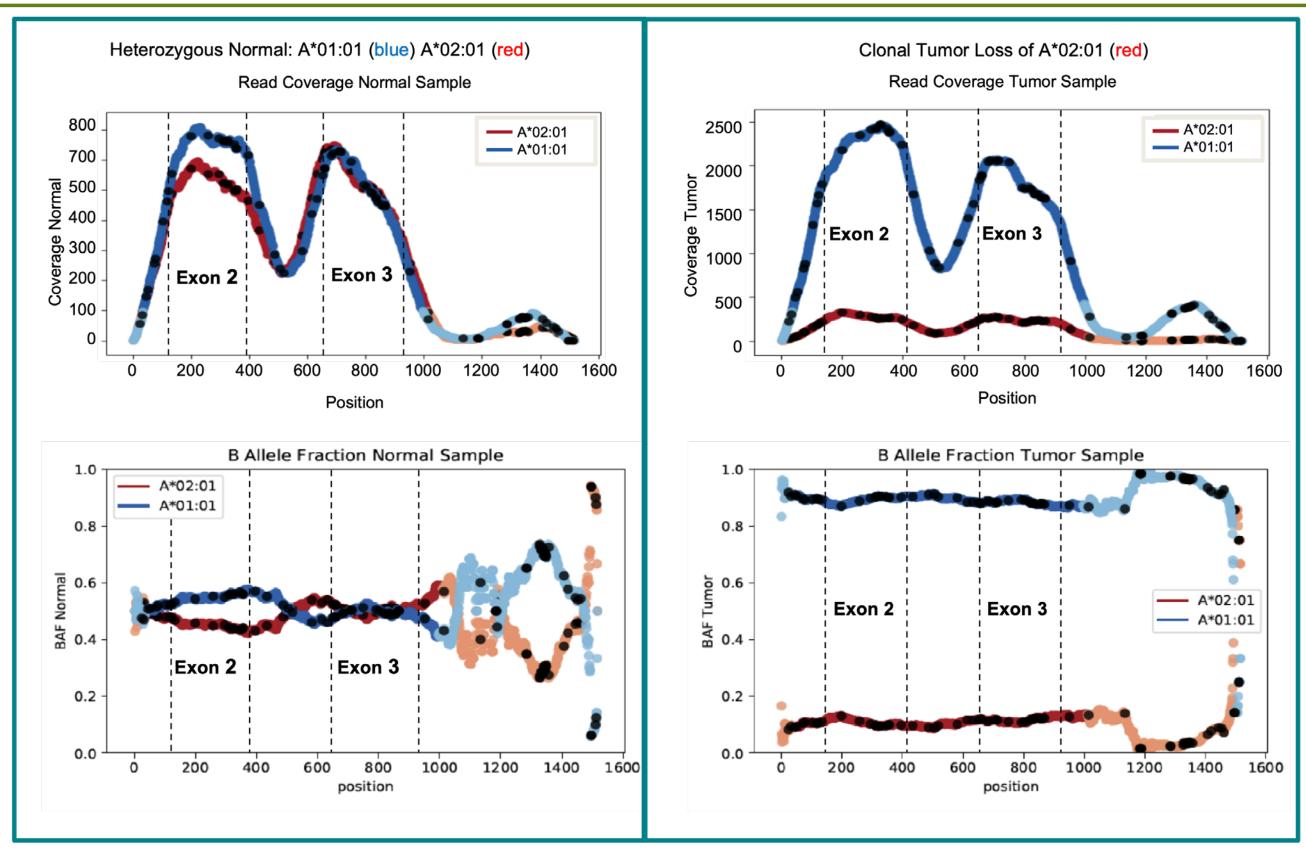
Abstract Number 27

BASECAMP-1: Leveraging Human Leukocyte Antigen A (HLA-A) Loss of Heterozygosity (LOH) in Solid Tumors to Identify Patients for Carcinoembryonic Antigen (CEA) and Mesothelin (MSLN) Logic-Gated Tmod Chimeric Antigen Receptor (CAR) T-Cell Therapy

Caleb J. Smith¹, Sally Lau², Edward Garon³, Sandip Patel⁴, Yanyan Lou⁵, Marcela V. Sandip Patel⁴, Yanyan Lou⁵, Sandip Patel⁵, Sandip Patel⁵, Sandip Patel⁵, Sandip Patel⁵, Sandip Patel⁴, Yanyan Lou⁵, Sandip Patel⁵, Maus⁹, Diane M. Simeone², Scott Kopetz⁸, Ariane Lozac'hmeur¹⁰, Ameen A. Salahudeen¹¹, Judy Vong¹², Kirstin B. Liechty¹², John S. Welch¹², Eric W. Ng¹², William Y. Go¹², David Maloney¹³, Julian R. Molina¹


¹Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA; ²New York, NY, USA; ³David Geffen School of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, CA, USA; ⁴Department of Medical Oncology, University of California, San Diego, San ⁵Mayo Clinic, Jacksonville, FL, USA; ⁶University of California, at Los Angeles, Los Angeles, CA, USA; ⁸Massachusetts General Cancer Center, Boston, MA, USA; ⁸Massachusetts General Cancer Center, Boston, MA, USA; ⁸Massachusetts General Cancer Center, Boston, MA, USA; ⁹Massachusetts General Cancer Center, Boston, MA, ⁹Massachusetts General Cancer Center, Boston, MA, ⁹Massachus ¹⁰Tempus Labs, Inc., Chicago, IL, USA; ¹¹Biological Modeling, Tempus Labs, Inc., Agoura Hills, CA, USA; ¹³Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ¹⁰Tempus Labs, Inc., Agoura Hills, CA, USA; ¹³Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ¹⁰Tempus Labs, Inc., Agoura Hills, CA, USA; ¹³Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ¹⁰Tempus Labs, Inc., Agoura Hills, CA, USA; ¹⁴Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ¹⁰Tempus Labs, Inc., Agoura Hills, CA, USA; ¹⁴Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ¹⁰Tempus Labs, Inc., Agoura Hills, CA, USA; ¹⁰Tempus Labs,

BACKGROUND

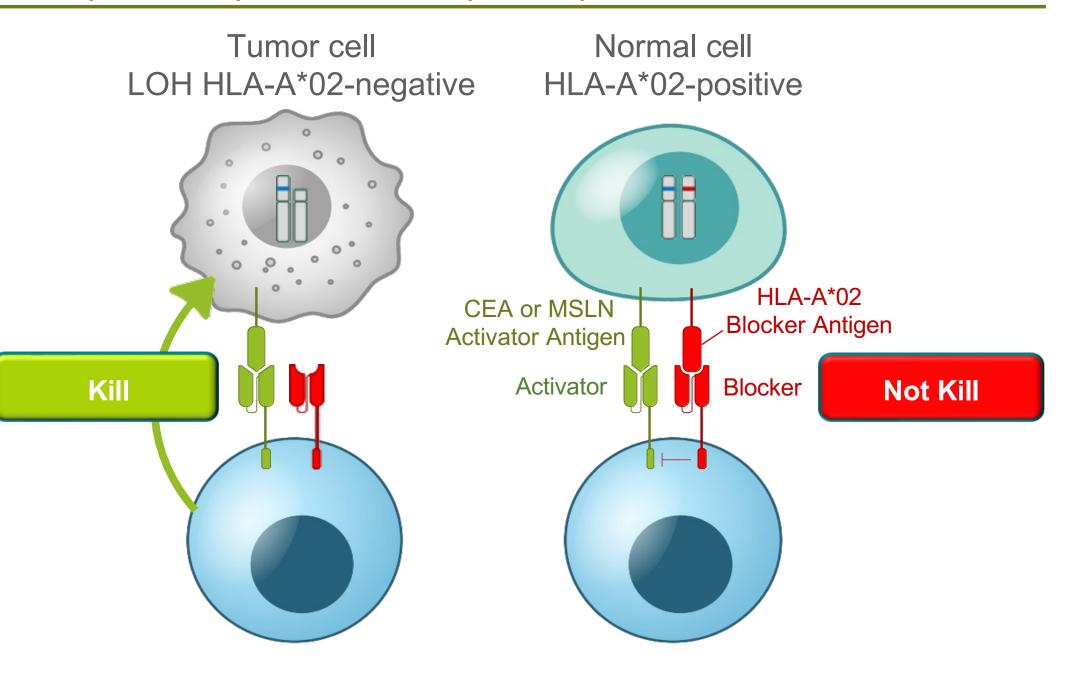
- Metastatic non-small cell lung cancer and mesothelioma are thoracic malignancies with poor outcomes, with 5-year survival rates of 8% [1]
- Chimeric antigen receptor (CAR) T-cell therapy has demonstrated improved clinical outcomes in hematologic malignancies [2,3]. However, translating engineered T-cell therapies to solid tumors proves difficult due to a lack of tumor-specific targets that distinguish cancer cells from normal cells. In previous studies, the use of carcinoembryonic antigen 5 (CEA) T-cell receptors and mesothelin (MSLN) CARs both resulted in dose-limiting on-target, off-tumor toxicities [4-6]

STUDY RATIONALE (cont.)

Figure 3. Read coverage and B allele fraction (ratio of coverage for allele 1 and allele 2)

STUDY DESIGN AND METHODS

Figure 7. Study schema for BASECAMP-1 (NCT04981119)



• Tmod[™] CAR T-cell is a logic-gated cell therapy that addresses these challenges by leveraging dual receptors capable of killing tumor cells while leaving healthy cells intact [7]. Tmod platform technology is a versatile system that may be applied to T cells and natural killer cells in autologous and allogeneic settings

- A2B530 is a CEA-directed and A2B694 is an MSLN-directed Tmod construct utilizing a leukocyte immunoglobulin-like receptor 1 (LIR-1)-based inhibitory receptor (blocker) targeting human leukocyte antigen (HLA)-A*02
- HLA loss of heterozygosity (LOH) may provide a means to distinguish tumor from normal tissue in a definitive manner due to this irreversible, clonal loss within tumor cells [7,8]. The 2 receptors of the Tmod CAR T-cell platform comprise an activator that recognizes an antigen present on the surface of normal and tumor cells and a blocker that recognizes a second surface antigen from an HLA allele lost only in tumor cells
- In the Tempus real-world database, LOH occurs in 12.2% to 26.0% of advanced solid tumors with an average of 16.3% in 10,867 samples tested [9]
- The Tempus xT is a clinical diagnostic test commonly used for patients with lung cancer that can readily identify HLA-A*02:01 LOH
- BASECAMP-1 (NCT04981119) is an ongoing study with key objectives: 1) To determine and identify patients with somatic HLA LOH eligible for Tmod CAR T-cell therapy; and 2) Subsequent leukapheresis and manufacturing feasibility for future Tmod CAR T-cell trials
- Eligible patients identified in BASECAMP-1 will be referred to the EVEREST-1 A2B530 CEA Tmod or EVEREST-2 A2B694 MSLN Tmod interventional studies

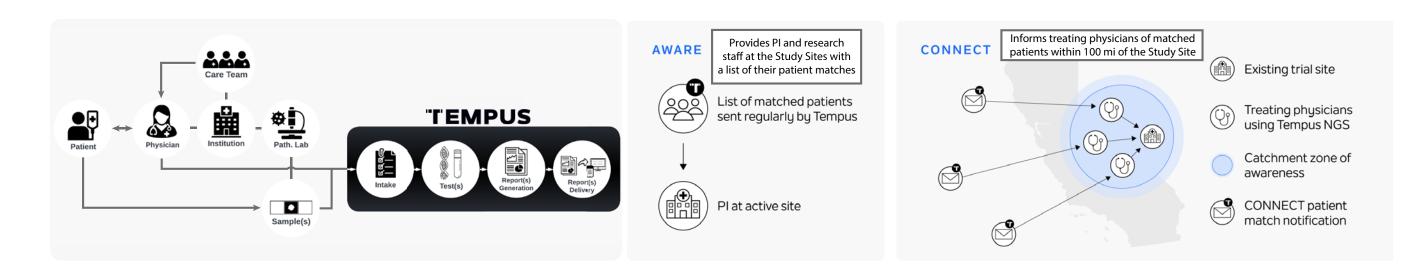
STUDY RATIONALE

Figure 1. Logic-gated CAR T with the goal of reducing toxicity: CEA or **MSLN** (activators) and HLA-A*02 (blocker)

- A representative example of clonal HLA LOH (Figure 3), where discordance is observed in read coverage of HLA-A*02:01 between the tumor and matched-normal samples [9,11]
- HLA-A*02:01 LOH can be reliably detected using the Tempus xT clinical diagnostic test (**Table 1**)

Table 1. Frequency of HLA-A LOH in advanced solid tumors^a

	Tempus HLA-A LOH advanced disease real-world data [9]		TCGA HLA-A LOH primary tumors [12]		Montesion et al [13]	
	Samples, n	HLA-A LOH frequency, %	Samples, n	HLA-A LOH frequency, %	Samples, n	HLA-A LOH frequency, %
NSCLC	1,915	23.1	501	25.3	13,240	23
Mesothelioma	7	14.3	87	11.5	404	12.4
Colorectal cancer	1,854	15.6	615	9.6	10,682	15.3
Gastroesophageal cancer	506	20.8	625	16.2	3,174	22.2
Mesothelioma Colorectal cancer	n 1,915 7 1,854	frequency, 23.1 14.3 15.6	n 501 87 615	frequency, 25.3 11.5 9.6	n 13,240 404 10,682	freque % 2: 12 15


						CEA I mod (NSCLC, CRC)
Initial screening	xT NGS testing	Screening for leukapheresis	Leukapheresis	Safety follow-up	Telephone contact follow-up	PANC) or EVEREST-2 A2B694 MSLN
Informed consent part 1 for HLA and xT NGS testing HLA-typing for HLA-A*02	xT NGS testing for confirming HLA-A*02 LOH	Informed consent part 2 for leukapheresis Eligibility screening for leukapheresis		Safety follow contact at da post-leukaph	Tmod (NSCLC CRC, PANC, ovarian cancer mesothelioma) interventiona studies	

CEA, carcinoembryonic antigen 5; CRC, colorectal cancer; HLA, human leukocyte antigen; LOH, loss of heterozygosity; MSLN, mesothelin; NGS, next-generation sequencing; NSCLC, non-small cell lung cancer; PANC, pancreatic cancer.

- Participants will be initially screened to identify germline HLA-A*02 heterozygosity by central NGS. If HLA-A*02 heterozygosity is confirmed, primary tumor tissue will be analyzed by xT NGS testing to determine if somatic tumor HLA-A*02 LOH is present. If the tumor demonstrates HLA-A*02 LOH and the participant screens eligible, the participant will undergo leukapheresis
- Participants enrolled in the study who undergo leukapheresis will be evaluated for safety 7 days after leukapheresis and followed for relapsed status

• Banked T cells will be available for the autologous EVEREST-1 A2B530 CEA Tmod and EVEREST-2 A2B694 MSLN Tmod interventional studies when clinically appropriate

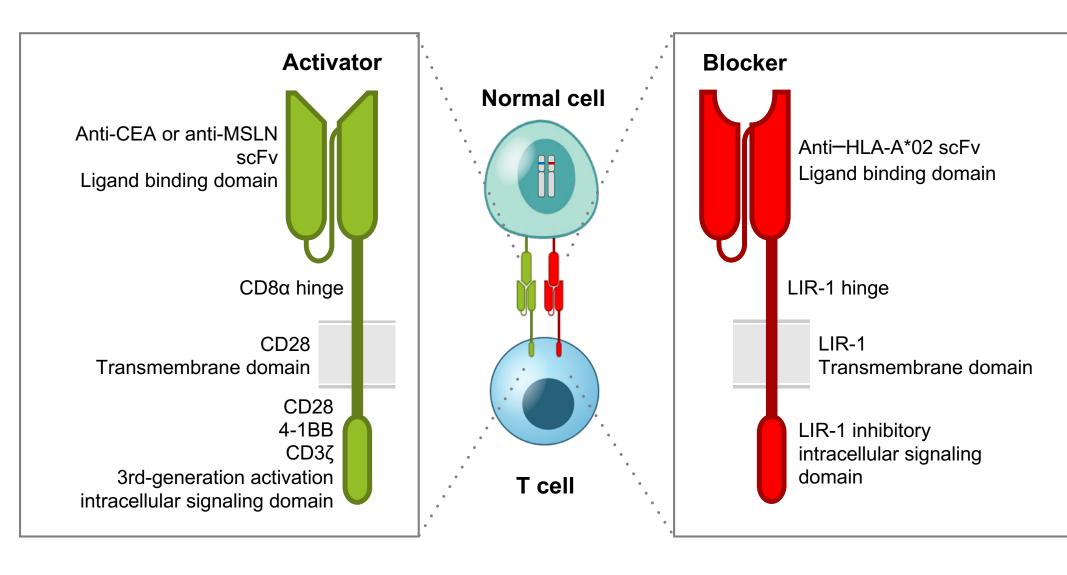
Figure 8. Tempus clinical workflow

NGS, next-generation sequencing; PI, principal investigator.

Figure 9. BASECAMP-1 progress to date and screening process details: 5 HLA LOH patients identified (Updated data cut on February 6, 2023)

HLA-A*02:01 LOH positiv

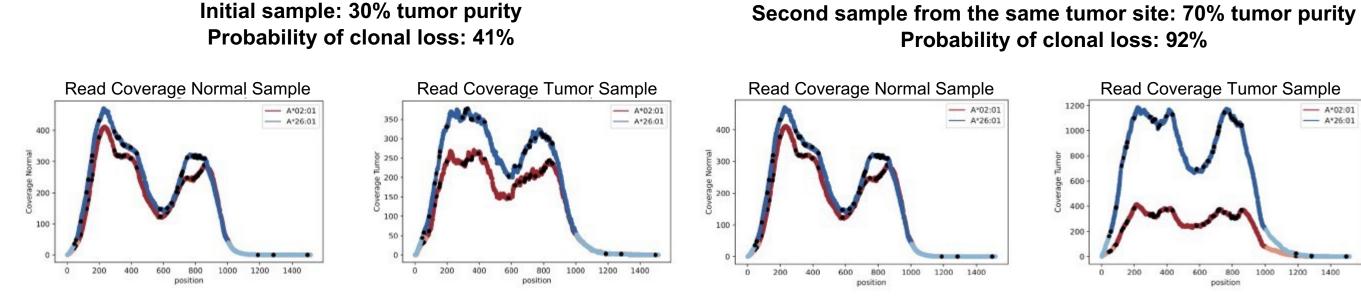
Tmod CAR T Cell Tmod CAR T Cell


CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen 5; HLA, human leukocyte antigen; LOH, loss of heterozygosity; MSLN, mesothelin. • A2 Bio's Tmod CAR T HLA LOH approach has been published by Hamburger et al 2020 (Figure 1) [7]

- HLA was selected as blocker target; first blocker HLA-A*02 is the most prevalent allele in the US population - Activators include CEA and MSLN, which are both well-studied targets but showed dose-limiting toxicities in previous studies

• CAR T HLA-A LOH approach is independently validated by Vogelstein/Kinzler, 2021 [8]

Figure 2. CEA or MSLN CAR Tmod single vector construct

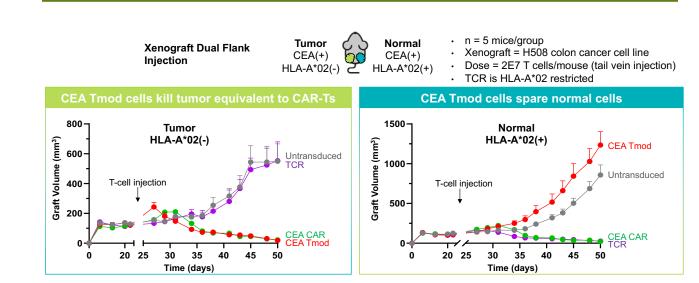


Pancreatic cancer	675	19.6	184	33.1	4,049	23.4
Prostate cancer	998 ^b	3.4 ^b	500	4.5	2,774	5.8
Ovarian, fallopian tube, primary peritoneal cancers	569	16	579	17.1	4,996	15.7
Breast cancer	1,447	12.2	1,080	13.6	9,686	13.2
Head and neck squamous cell carcinoma	208	26	522	16.1	1,134	27.2

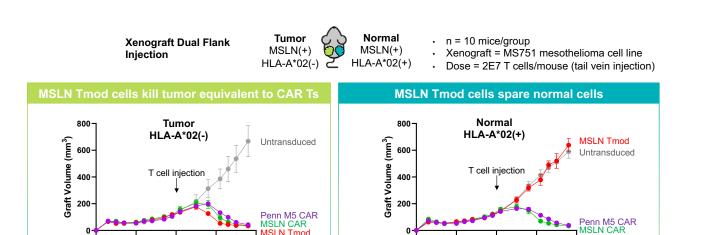
HLA, human leukocyte antigen; LOH, loss of heterozygosity; NSCLC, non-small cell lung cancer; TCGA, The Cancer Genome Atlas ^aTempus data contain more advanced disease, and TCGA data have more primary tumors. ^bUnpublished data.

Figure 4. Higher tumor purity allows for more accurate prediction of HLA-A*02 LOH

HLA, human leukocyte antigen; LOH, loss of heterozygosity


In vivo studies show that Tmod maintains selectivity

• Tumor (HLA-A*02[-]) and "normal" (HLA-A*02[+]) cells were implanted subcutaneously in NOD scid gamma (NSG) mice


CAR T cells or Tmod CAR T cells were administered via tail veins when tumor reached 100-150 mm³

• Approximately 2 weeks following cell infusion, Tmod CAR T-cell-treated mice (shown in red) experienced selective regression of tumor grafts while "normal" tumor grafts continued to grow. Mice treated with CEA or MSLN CAR T cells (shown in green) experienced regressions of both tumor and "normal" tumor grafts (**Figures 5** and **6**)

Figure 5. CEA Tmod (A2B530) in vivo study demonstrates potency comparable to NCI benchmark CEA TCR-T [4, 14]

Figure 6. MSLN Tmod (A2B694) in vivo study demonstrates potency comparable to M5 benchmark MSLN CAR T [15]

10 20 30 40

BASECAMP-1	236 pts	in process to LabCorp		
Current statistics	HLA resulted	156 pts		
107/263 (41%) of patients	107 pts	Not HLA-A*02:01 heterozygous		
(~35% to 38% predicted)	HLA-A*02:01	44 pts		
5/37 (14%) of resulted patients		Tumor tissue in process to Tempus		
LOH positive (~16% predicted)	63 pts Tumor tissue at Tempus			
•2 LOH (+) patients with PANC at NYU		26 pts ► Tumor tissue undergoing Tempus QC		
•2 LOH (+) patients with NSCLC at Mayo •1 LOH (+) patient with NSCLC at NYU	37 pts LOH resulted	rempus QC		
		32 pts HLA-A*02:01		
	5 nts	LOH negative		

HLA, human leukocyte antigen; LOH, loss of heterozygosity; NSCLC, non-small cell lung cancer; PANC, pancreatic cancer; QC, guality control.

MD Anderson Cancer Center

- Principal Investigator: Maria Pia Morelli, MD, PhD

Sub-Investigator: Scott Kopetz, MD, PhD

Sub-Investigator: Edward Garon, MD

Sub-Investigator: Daniel Greenwald, MD

- Principal Investigator: J. Randolph Hecht, MD

University of California, Los Angeles

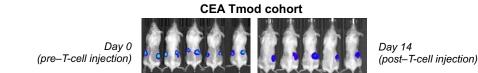
SITE LIST

_____ A*02:01 _____ A*26:01

- NYU Langone Medical Center - Principal Investigator: Diane Simeone, MD - Sub-Investigator: Theodore Welling, MD - Sub-Investigator: Sally Lau, MD
- Mayo Clinic, Rochester - Principal Investigator: Julian Molina, MD, PhD
- Sub-Investigator: Yi Lin, MD, PhD - Sub-Investigator: Caleb Smith, MD

Moffitt Cancer Center

- Principal Investigator: Kedar Kirtane, MD Sub-Investigator: Frederick Locke, MD - Sub-Investigator: Tiago Biachi, MD
- City of Hope
 - Principal Investigator: Marwan Fakih, MD
 - University of California, San Diego
 - Principal Investigator: Sandip Patel, MD
 - Sub-Investigator: Andrew Lowy, MD


References

1. American Cancer Society. Cancer Facts & Figures 2022. Atlanta: American Cancer Society; 2022 2. Locke F, et al. N Engl J Med. 2022;386(7):640-654. 3. Maude S, et al. N Engl J Med. 2018;378(5):439-448 4. Parkhurst M, et al. Mol Ther. 2011;19(3):620-626. 5. Haas AR, et al. Mol Ther. 2019;27(11):1919-1929. 6. Tanyi JL, et al. Presented at: Cellicon Valley '21: The Future of Cell and Gene Therapies; May 6-7, 2021; virtual symposium. 7. Hamburger A, et al. Mol Immunol. 2020;128:298-310. 8. Hwang M, et al. Proc Natl Acad Sci U S A. 2021;118(12):e2022410118. 9. Hecht J, et al. J Clin Oncol. 2022;40(4_suppl):190-190. 10. Borges L, et al. J Immunol. 1997;159(11):5192-5196. 11. Perera J, et al. J Immunother Cancer. 2019;7(suppl 1):P103. 12. The Cancer Genome Atlas (TCGA) Research Network. Accessed June 2021. https://www.cancer.gov/tcga 13. Montesion M, et al. Cancer Discov. 2021;11(2):282-292. 14. Sandberg M, et al. Sci Transl Med. 2022;14(634):eabm0306 15. Tokatlian T, et al. J Immunother Cancer. 2022;10(1):e003826.

β2M shRNA, β2-microglobulin short-hairpin RNA; CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen 5; EF1a, elongation factor-1; HLA, human leukocyte antigen; LIR-1, leukocyte immunoglobulin-like receptor 1; LTR, long terminal repeat; MSLN, mesothelin; scFv, single-chain variable fragment; T2A, thosea asigna virus 2A.

• CAR activator: 3rd-generation CAR T with both signal 1 (CD3ζ) and signal 2 activation domains (CD28 and 4-1BB) CAR blocker: LIR-1 is a member of the immune inhibitory receptor family and contains 4 immunoreceptor tyrosine-based inhibition motifs in its signaling domain [10]

• Replicant incompetent single lentivirus transgene: The activator and blocker receptors are co-expressed in a single construct containing a cleavable T2A linker (**Figure 2**)

antigen; NCI, National Cancer Institute; TCR, T-cell.

CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen 5; HLA, human leukocyte

CAR, chimeric antigen receptor; HLA, human leukocyte antigen; MSLN, mesothelin.

Acknowledgements

The authors would like to thank: Alexander Kamb, PhD – Founder and Chief Scientific Officer of A2 Bio Han Xu, PhD – Vice President of Therapeutic Technology at A2 Bio Agnes E. Hamburger, PhD – Vice President of Drug Discovery at A2 Bio Armen Mardiros, PhD – Scientific Director of Therapeutic Technology at A2 Bio Mark L. Sandberg, PhD – Scientific Director of Drug Discovery at A2 Bio Talar Tokatlian, PhD – Principal Scientist at A2 Bio • Bio Connections, LLC This study was supported by A2 Bio

Presented at the IASLC 2023 Targeted Therapies of Lung Cancer Meeting, February 22-25, 2023.