Figure 1. Logic-based CAR T-cell Therapy With the Goal to Reduce Toxicity: CAR (Activator) and HLA-A*02 (Blocker) (4).

Figure 2. The Structure of Tmod CAR-T Cells Expressing a CEA-Targeted Activator and an HLA-A*02 Blocker (4).

Figure 3. High CEA mRNA Expression on CRC.

Table 1. Frequency of HLA-A*02 in Advanced Tumors (5).

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Frequency of HLA-A*02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal cancer</td>
<td>5%</td>
</tr>
<tr>
<td>Endometrial cancer</td>
<td>10%</td>
</tr>
<tr>
<td>Head and neck cancer</td>
<td>15%</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>20%</td>
</tr>
<tr>
<td>Melanoma</td>
<td>25%</td>
</tr>
</tbody>
</table>

Nonclinical Data

In order to test the nonclinical models of A2B530 demonstrated improved survival and the potential to inhibit tumors with comparable efficacy to National Cancer Institute (NCI) recommended CAR T-cell therapy (4).

Figure 4. CEA Tumor T Cells (A2B530) in Vitro Study Provides a Therapeutic Safety Window Comparable to NCI Benchmark CEA-NCT019127 (4).

Figure 5. EVEREST-1: A seamless phase 1/2 study of CEA-directed Tmod™ CAR T-cell therapy (A2B530) in adults with solid tumors associated with CEA expression also exhibiting HLA loss of heterozygosity (LOH).

Figure 6. HLA-A*02 Variation in Solid Tumors (4).

Figure 7. EVEREST-1: Phase 1 Dose Escalation Study Design (4).

References


