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EVEREST-1: A seamless phase 1/2 study of CEA-directed 
logic-gated TmodTM CAR T-cell therapy (A2B530) in adults 
with solid tumors associated with CEA expression also 
exhibiting HLA loss of heterozygosity (LOH)
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BACKGROUND AND STUDY OBJECTIVES
• Chimeric	antigen	receptor	(CAR)	T-cell	therapy	has	demonstrated	clinical	efficacy	in	hematologic	malignancies	[1];	however,	implementation
of	these	therapies	in	solid	tumors	has	been	challenging	due	to	a	lack	of	tumor-specific	targets	that	discriminate	cancer	from	normal	cells

− Previous	studies	using	carcinoembryonic	antigen	5	(CEA)	T-cell	receptors	and	T-cell	engagers	have	resulted	in	dose-limiting,	on-target,
off-tumor	toxicities	[2,3]

• Tmod	CAR	T-cell	therapy	addresses	challenges	of	on-target,	off-tumor	toxicity	by	combining	a	CAR-activating	receptor	with	a	blocking
receptor	to	discriminate	tumor	from	normal	cells	(Figures 1 and 2)	[4,5]

• A2B530	is	a	CEA-directed	Tmod	CAR	T-cell	construct	utilizing	a	leukocyte	immunoglobulin-like	receptor-1-based	inhibitory	receptor
(blocker)	targeting	human	leukocyte	antigen	(HLA)-A*02	(Figure 2)

• The	activator	receptor	recognizes	CEA	on	the	surface	of	both	tumor	and	normal	cells;	CEA	is	normally	widely	expressed	in	epithelial	cells,
particularly	of	the	gastrointestinal	(GI)	system	and	can	be	upregulated	in	GI	and	lung	tumors	(Figure 3)

• The	blocker	receptor	recognizes	an	HLA-A*02	allele	that	is	present	in	normal	cells	and	often	lost	in	tumor	cells	[6]

− For	patients	who	are	germline	HLA-A*02	heterozygous	for	the	allele,	loss	of	the	allele	in	tumor	cells	is	called	LOH

− LOH	for	HLA-A*02	is	observed	in	solid	tumor	malignancies	and	can	be	detected	using	the	Tempus	next-generation	sequencing	(NGS)	testing

• Tmod	cells	are	logic-gated:	the	blocker	component	prevents	CAR-mediated	killing	of	normal	cells;	whereas,	in	tumor	cells	with	LOH,	the
blocker	is	no	longer	engaged,	allowing	the	CAR	to	activate	tumor	cell	killing	(Table 1)

• EVEREST-1	(NCT05736731)	is	a	seamless,	phase	1/2,	open-label,	nonrandomized	study	to	evaluate	the	safety	and	efficacy	of	A2B530,	a
logic-gated	CEA-targeting	Tmod	CAR	T-cell	therapy,	in	adult	patients

STUDY RATIONALE

Figure 1. Logic-gated CAR T-cell Therapy With the Goal to Reduce Toxicity: CEA (Activator) and 
HLA-A*02 (Blocker) [4]
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Activator
CEA Activator Antigen
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Not KillKill

CAR,	chimeric	antigen	receptor;	CEA,	carcinoembryonic	antigen	5;	HLA,	human	leukocyte	antigen;	LOH,	loss	of	heterozygosity.

Figure 2. The Structure of Tmod CAR T Cells Expressing a CEA-Targeted Activator and an 
HLA-A*02-Targeted Blocker [7]
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β2M	shRNA,	beta-2-microglobulin	short-hairpin	RNA;	CAR,	chimeric	antigen	receptor;	CD,	cluster	of	differentiation;	CEA,	carcinoembryonic	antigen	5;	EF1α,	elongation	factor-1α;	HLA,	human	leukocyte	antigen;	LIR,	
leukocyte	immunoglobulin-like	receptor;	MHC,	major	histocompatibility	complex;	scFv,	single-chain	variable	fragment;	T2A,	thosea	asigna	virus	2A.

Figure 3. High CEA mRNA Expression on CRC
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ACC,	adrenocortical	carcinoma;	BLCA,	bladder	cancer;	BRCA,	breast	cancer;	CESC,	cervical	squamous	cell	carcinoma	and	endocervical	adenocarcinoma;	CHOL,	cholangiocarcinoma;	COAD,	colon	adenocarcinoma;	
CRC,	colorectal	cancer;	DLBC,	diffuse	large	B-cell	lymphoma;	ESCA,	esophageal	carcinoma;	GBM,	glioblastoma	multiforme;	HNSC,	head	and	neck	squamous	cell	carcinoma;	KICH,	kidney	chromophobe;	KIRC,	kidney	
renal	clear	cell	carcinoma;	KIRP,	kidney	renal	papillary	cell	carcinoma;	LAML,	acute	myeloid	leukemia;	LGG,	lower	grade	glioma;	LIHC,	liver	hepatocellular	carcinoma;	LUAD,	lung	adenocarcinoma;	LUSC,	lung	squamous	
cell	carcinoma;	MESO,	mesothelioma;	OV,	ovarian	cancer;	PAAD,	pancreatic	adenocarcinoma;	PCPG,	pheochromocytoma	and	paraganglioma;	PRAD,	prostate	adenocarcinoma;	READ,	rectum	adenocarcinoma;	SARC,	
sarcoma;	SKCM,	skin	cutaneous	melanoma;	STAD,	stomach	adenocarcinoma;	TCGA,	The	Cancer	Genome	Atlas;	TGCT,	testicular	germ	cell	tumor;	THCA,	thyroid	carcinoma;	THYM,	thymoma;	TPM,	transcripts	per	
million;	UCEC,	uterine	corpus	endometrial	carcinoma;	UCS,	uterine	carcinosarcoma;	UVM,	uveal	melanoma.

Table 1. Frequency of HLA-A LOH in Advanced Tumors [8,9]a

Tempus HLA-A LOH advanced disease 
real-world TCGA HLA-A LOH primary tumors

Average, % (n) 16.3 (10,867) 12.6 (10,844) 
Colorectal cancer, % (n) 15.6 (1854) 9.6 (615) 
Gastroesophageal cancer, % (n) 20.8 (506) 16.2 (625)
Pancreatic cancer, % (n) 19.6 (675) 33.1 (184) 
NSCLC, % (n) 23.1 (1915) 25.3 (501)

a Tempus	data	contain	more	advanced	disease	and	TCGA	data	have	more	primary	tumors.
HLA,	human	leukocyte	antigen;	LOH,	loss	of	heterozygosity;	NSCLC,	non-small	cell	lung	cancer;	TCGA,	The	Cancer	Genome	Atlas.

Nonclinical Data
• In	vitro	and	in	vivo	nonclinical	studies	of	A2B530	demonstrated	improved	selectivity	and	a	therapeutic	safety	window	with	comparable
efficacy	to	National	Cancer	Institute	(NCI)	benchmark	CEA	T-cell	receptor	T	Cell	(Figures 4 and 5)

• Tmod	provided	selectivity	at	varying	effector-to-target	ratios	with	“normal”	CEA(+)A*02(+)	cells	and	tumor	CEA(+)A*02(-)	colon	cancer	cell
lines (Figure 4A)

• Mixed	A*02(+)	and	A*02(-)	cell	cultures	show	the	ability	of	Tmod	to	discriminate	between	“normal”	(A*02[+])	and	tumor	(A*02[-])	cells
(Figure 4B)

• CEA	and	HLA-A*02	standard	plots	were	generated	using	CEA	expression	data	from	mRNA	data	(Figure 4C)

− CEA	Tmod	Jurkat	or	T-cell	effective	concentration	and	inhibitory	concentration	were	graphed	with	the	tumor	and	normal	expression
values	for	the	CEA	and	A*02	antigens,	along	with	multiple	cell	lines

Figure 4. CEA Tmod CAR T Cell (A2B530) In Vitro Study Provides a Therapeutic Safety Window 
Comparable to NCI Benchmark CEA NCI TCR [2,6]
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a	Red	box	used	to	represent	where	cell	killing	occurs.	

CAR,	chimeric	antigen	receptor;	CEA,	carcinoembryonic	antigen	5;	EC50,	half	maximal	effective	concentration;	E:T,	effector-to-target;	HLA,	human	leukocyte	antigen;	IC50,	half	maximal	inhibitory	concentration;	
LOH,	loss	of	heterozygosity;	NCI,	National	Cancer	Institute;	TCR,	T-cell	receptor;	TPM,	total	particulate	matter.

STUDY RATIONALE (CONTINUED) 

Figure 5. CEA Tmod CAR T Cell (A2B530) In Vivo Study Demonstrates Potency Comparable to NCI 
Benchmark CEA TCR [2,6]

CEA Tmod CAR T Cells (With the Blocker) 
Spare Normal Cells

CEA Tmod CAR T Cells (With the Blocker) Kill Tumor 
Equivalent to CAR T Cells Alone (Without the blocker)

Tumor HLA-A*02(-)

Day 0 
(pre–T-cell injection)

Day 14 
(post–T-cell injection)

Normal HLA-A*02(+)

0 20
0

200

400

600

800

G
ra

ft 
vo

lu
m

e 
(m

m
3 )

25 30 35 40 45 50 0 20
0

500

1000

1500

G
ra

ft 
vo

lu
m

e 
(m

m
3 )

25 30 35 40 45 50

T-cell injection T-cell injection

CEA Tmod

Untransduced

CEA CAR

TCR

CEA Tmod

Untransduced

CEA CAR
TCR

Xenograft Dual Flank Injection

CEA Tmod cohort

Time (days) Time (days)

Normal
CEA(+) 

HLA-A*02(+) 

Tumor
CEA(+) 

HLA-A*02(-) 

• N = 5 mice/group
• Xenograft = H508 colon cancer cell line
• Dose = 2E7 T cells/mouse (tail vein injection)
• CEA TCR is HLA-A*02 restricted

CAR,	chimeric	antigen	receptor;	CEA,	carcinoembryonic	antigen	5;	HLA,	human	leukocyte	antigen;	NCI,	National	Cancer	Institute;	TCR,	T-cell	receptor.

• In	vivo	studies	show	that	Tmod	maintains	selectivity

• Tumor	(HLA-A*02[-])	and	“normal”	(HLA-A*02[+])	cells	were	implanted	subcutaneously	in	NOD	scid	gamma	mice

• CAR	T	cells	or	Tmod	CAR	T	cells	were	administered	via	tail	veins	when	tumor	reached	100-150mm3

• Approximately	2	weeks	after	cell	infusion,	A2B530	treated	mice	experienced	selective	regression	of	tumor	grafts,	while	“normal”	tumor
grafts	continued	to	grow.	Mice	treated	with	CEA-targeted	CAR	T	cells	experienced	regressions	of	both	tumor	and	“normal”	tumor	grafts
(Figure 5)

STUDY DESIGN

Figure 6. Study Schema: BASECAMP-1 to EVEREST-1
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a May occur at any point in disease course. b	For	patients	with	CRC	or	PANC,	CEA	assessment	will	be	performed	retrospectively,	and	the	result	is	not	needed	for	enrollment.

CAR,	chimeric	antigen	receptor;	CEA,	carcinoembryonic	antigen	5;	CRC,	colorectal	cancer;	HLA,	human	leukocyte	antigen;	LOH,	loss	of	heterozygosity;	NSCLC,	non-small	cell	lung	cancer;	PANC,	pancreatic	cancer;	
PCLD,	preconditioning	lymphodepletion.

• EVEREST-1	(NCT05736731)	is	a	first-in-human,	phase	1/2,	multicenter,	open-label,	nonrandomized	study	to	evaluate	the	safety	and
efficacy	of	a	single-dose	of	A2B530	Tmod	CAR	T	cells	in	adult	patients	with	metastatic	colorectal	cancer	(CRC),	non-small	cell	lung
cancer	(NSCLC),	pancreatic	cancer	(PANC),	or	other	solid	tumors	associated	with	CEA	expression

• Patients	are	enrolled	to	EVEREST-1	through	BASECAMP-1	(NCT04981119),	a	master	prescreening	study	that	identifies	patients	with
HLA	LOH	at	any	time	in	the	course	of	their	disease

− BASECAMP-1	eligible	patients	undergo	leukapheresis	and,	when	clinically	appropriate,	their	banked	T	cells	are	used	to	manufacture
A2B530	for	the	EVEREST-1	study	(Figure 6)

Figure 7. EVEREST-1 Phase 1 Dose Escalation Study Design 
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MTD,	maximum	tolerated	dose;	PCLD,	preconditioning	lymphodepletion;	SRT,	safety	review	team.

• The	phase	1	dose	escalation	portion	of	the	study	employs	a	Bayesian	optimal	interval	design	(BOIN)	to	assess	the	safety	and	tolerability
of	A2B530	and	to	determine	a	recommended	phase	2	dose	(RP2D;	Figure 7); 9 to 30 patients will be included in the dose escalation

Inclusion Criteria
• Appropriately	enrolled	in	the	BASECAMP-1	A2	Biotherapeutics,	Inc.	study,	with	tissue	demonstrating	LOH	of	HLA-A*02	by	NGS
(whenever	possible	from	the	primary	site),	successful	apheresis	and	PBMC	processing,	and	with	sufficient	stored	cells	available	for 
Tmod	CAR	T-cell	therapy

• Histologically	confirmed	recurrent	unresectable,	locally	advanced,	or	metastatic	CRC,	NSCLC,	PANC,	or	other	solid	tumors 
associated with	CEA	expression;	measurable	disease	is	required	with	lesions	of	>1.0	cm	by	computed	tomography.	(Soluble	CEA	is 
not	acceptable as	the	sole	measure	of	disease).

• Received	previous	required	therapy	for	the	appropriate	solid	tumor	disease	as	described	in	the	protocol

• Has	adequate	organ	function	as	described	in	the	protocol

• Eastern	Cooperative	Oncology	Group	performance	status	0	to	1

• Life	expectancy	of	≥3	months

• Willing	to	comply	with	study	schedule	of	assessments	including	long-term	safety	follow-up

Figure 8. EVEREST-1 Study Objectives and Endpoints

Objectives Primary Endpoints
• Phase 1: Determine the safety

and the optimal dose of A2B530
(after PCLD) in participants with
solid tumor disease

• Phase 2: Determine the further
safety and efficacy of A2B530

• Phase 1: Rate of adverse events
and dose-limiting toxicities by dose
levels; recommended phase 2 dose

• Phase 2: Overall response rate

Secondary Endpoints
• Persistence of A2B530
• Cytokine analysis

PCLD,	preconditioning	lymphodepletion.
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