Abstract Number 634

EVEREST-1: A seamless phase 1/2 study of CEA-directed logic-gated Tmod[™] CAR T-cell therapy (A2B530) in adults with solid tumors associated with CEA expression also exhibiting HLA loss of heterozygosity (LOH)

Salman R. Punekar¹, Theodore Welling¹, J. Randolph Hecht², Julian R. Molina³, Caleb Smith³, Edward Garon², M. Pia Morelli⁴, Marwan Fakih⁵, Kedar Kirtane⁶, Patrick M. Grierson⁷, Sandip P. Patel⁸, Yi Lin³, Scott Kopetz⁴, Frederick L. Locke⁶, Jeffrey Ward⁷, Ariane Lozac'hmeur⁹, Matthew Frigault¹⁰, Sarah Nikiforow¹¹, Wen-Kai Weng¹², Jennifer Specht¹³, Tomislav Dragovich¹⁴, Judy Vong¹⁵, Armen Mardiros¹⁵, Kirstin Liechty¹⁵, William Y. Go¹⁵, John Welch¹⁵, Eric W. Ng¹⁵, Marcela Maus¹⁰, David G. Maloney¹³, Diane M. Simeone¹

¹New York University Langone Health, New York City, NY, USA; ²David Geffen School of Medicine at University of California at Los Angeles, CA, USA; ³Mayo Clinic, Rochester, MN, USA; ¹New York City, NY, ⁴The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁵ City of Hope, Duarte, CA, USA; ⁵ City of Hope, Duarte, CA, USA; ⁶ Moffitt Cancer Center, Tampa, FL, USA; ⁷ Washington University in St. Louis, St. Louis, MO, USA; ⁶ City of Hope, Duarte, CA, USA; ⁶ City of Hope, CA, USA; ⁶ ⁸University of California San Diego Health, San Diego, CA, USA; ⁹Tempus Labs, Inc., Chicago, IL, USA; ¹⁰Massachusetts General Hospital, Boston, MA, USA; ¹¹Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁰Massachusetts General Hospital, Boston, MA, ¹⁰Massachusetts General Hospital, Boston, MA, ¹⁰Massachusetts General Hospital, Boston, MA, ¹⁰Massachusetts General Hospital, ¹⁰Massachusetts General Hospital, ¹⁰Massachusetts General Hosp ¹²Stanford Medicine, Stanford, CA, USA; ¹³Fred Hutchinson Cancer Center, Gilbert, AZ, USA; ¹⁵A2 Biotherapeutics, Agoura Hills, CA, USA

BACKGROUND AND STUDY OBJECTIVES

- Chimeric antigen receptor (CAR) T-cell therapy has demonstrated clinical efficacy in hematologic malignancies [1]; however, implementation of these therapies in solid tumors has been challenging due to a lack of tumor-specific targets that discriminate cancer from normal cells
- Previous studies using carcinoembryonic antigen 5 (CEA) T-cell receptors and T-cell engagers have resulted in dose-limiting, on-target, off-tumor toxicities [2,3]
- Tmod CAR T-cell therapy addresses challenges of on-target, off-tumor toxicity by combining a CAR-activating receptor with a blocking receptor to discriminate tumor from normal cells (Figures 1 and 2) [4,5]
- A2B530 is a CEA-directed Tmod CAR T-cell construct utilizing a leukocyte immunoglobulin-like receptor-1-based inhibitory receptor (blocker) targeting human leukocyte antigen (HLA)-A*02 (Figure 2)
- The activator receptor recognizes CEA on the surface of both tumor and normal cells; CEA is normally widely expressed in epithelial cells, particularly of the gastrointestinal (GI) system and can be upregulated in GI and lung tumors (Figure 3)

STUDY RATIONALE (CONTINUED)

Figure 5. CEA Tmod CAR T Cell (A2B530) In Vivo Study Demonstrates Potency Comparable to NCI **Benchmark CEA TCR [2,6]**

Xenograft Dual Flank Injection

• N = 5 mice/group• Xenograft = H508 colon cancer cell line • Dose = 2E7 T cells/mouse (tail vein injection) • CEA TCR is HLA-A*02 restricted

CEA Tmod CAR T Cells (With the Blocker) Kill Tumor Equivalent to CAR T Cells Alone (Without the blocker) **CEA Tmod CAR T Cells (With the Blocker) Spare Normal Cells**

- The blocker receptor recognizes an HLA-A*02 allele that is present in normal cells and often lost in tumor cells [6]
- For patients who are germline HLA-A*02 heterozygous for the allele, loss of the allele in tumor cells is called LOH
- LOH for HLA-A*02 is observed in solid tumor malignancies and can be detected using the Tempus next-generation sequencing (NGS) testing
- Tmod cells are logic-gated: the blocker component prevents CAR-mediated killing of normal cells; whereas, in tumor cells with LOH, the blocker is no longer engaged, allowing the CAR to activate tumor cell killing (**Table 1**)
- EVEREST-1 (NCT05736731) is a seamless, phase 1/2, open-label, nonrandomized study to evaluate the safety and efficacy of A2B530, a logic-gated CEA-targeting Tmod CAR T-cell therapy, in adult patients

STUDY RATIONALE

Figure 1. Logic-gated CAR T-cell Therapy With the Goal to Reduce Toxicity: CEA (Activator) and HLA-A*02 (Blocker) [4]

CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen 5; HLA, human leukocyte antigen; LOH, loss of heterozygosity.

Figure 2. The Structure of Tmod CAR T Cells Expressing a CEA-Targeted Activator and an HLA-A*02-Targeted Blocker [7]

U6 promoter-driven shRNA

This component reduces human β2M expression resulting in reduced cell surface expression of HLA-A*02 in the transduced autologous T cells and alleviates cis-binding between blocker and HLA-A*02.

CAR blocker

Derived from LIR-1, a receptor expressed on NK cells, monocytes, dendritic cells, and some lymphocytes that, upon binding to MHC class I molecules, transmits inhibitory signals via its immunoreceptor tyrosine-based inhibitory motifs, resulting in the downregulation of immune function.

Replicant incompetent single lentivirus transgene The blocker and activator receptors are co-expressed in a single construct containing a cleavable T2A linker, which allows 2 separate proteins to be expressed from a single mRNA. The blocker and activator module in the vector (ie, 5" Blocker \rightarrow Activator) will minimize the chance that the activator is expressed without the blocker. **CAR** activator

3rd-generation CAR with both signal 1 $(CD3\zeta)$ and signal 2 activation domains (CD28 & 4-1BB). These signaling domains trigger increased T-cell activation that results in CAR T-cell proliferation, direct killing of target cells, and secretion of cytokines and chemokines to recruit and activate additional immune cells.

CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen 5; HLA, human leukocyte antigen; NCI, National Cancer Institute; TCR, T-cell receptor.

In vivo studies show that Tmod maintains selectivity

• Tumor (HLA-A*02[-]) and "normal" (HLA-A*02[+]) cells were implanted subcutaneously in NOD scid gamma mice

• CAR T cells or Tmod CAR T cells were administered via tail veins when tumor reached 100-150mm³

• Approximately 2 weeks after cell infusion, A2B530 treated mice experienced selective regression of tumor grafts, while "normal" tumor grafts continued to grow. Mice treated with CEA-targeted CAR T cells experienced regressions of both tumor and "normal" tumor grafts (Figure 5)

STUDY DESIGN

Figure 6. Study Schema: BASECAMP-1 to EVEREST-1

β2M shRNA, beta-2-microglobulin short-hairpin RNA; CAR, chimeric antigen receptor; CD, cluster of differentiation; CEA, carcinoembryonic antigen 5; EF1α, elongation factor-1α; HLA, human leukocyte antigen; LIR, leukocyte immunoglobulin-like receptor; MHC, major histocompatibility complex; scFv, single-chain variable fragment; T2A, thosea asigna virus 2A.

Figure 3. High CEA mRNA Expression on CRC

ACC, adrenocortical carcinoma; BLCA, bladder cancer; BRCA, breast cancer; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; CRC, colorectal cancer; DLBC, diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian cancer; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TCGA, The Cancer Genome Atlas; TGCT, testicular germ cell tumor; THCA, thyroid carcinoma; THYM, thymoma; TPM, transcripts per million; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.

Table 1. Frequency of HLA-A LOH in Advanced Tumors [8,9]^a

	Tempus HLA-A LOH advanced disease real-world	TCGA HLA-A LOH primary tumors
Average, % (n)	16.3 (10,867)	12.6 (10,844)
Colorectal cancer, % (n)	15.6 (1854)	9.6 (615)
Gastroesophageal cancer, % (n)	20.8 (506)	16.2 (625)
Pancreatic cancer, % (n)	19.6 (675)	33.1 (184)
NSCLC, % (n)	23.1 (1915)	25.3 (501)

^a Tempus data contain more advanced disease and TCGA data have more primary tumors.

HLA, human leukocyte antigen; LOH, loss of heterozygosity; NSCLC, non-small cell lung cancer; TCGA, The Cancer Genome Atlas.

Nonclinical Data

- In vitro and in vivo nonclinical studies of A2B530 demonstrated improved selectivity and a therapeutic safety window with comparable efficacy to National Cancer Institute (NCI) benchmark CEA T-cell receptor T Cell (Figures 4 and 5)
- Tmod provided selectivity at varying effector-to-target ratios with "normal" CEA(+)A*02(+) cells and tumor CEA(+)A*02(-) colon cancer cell lines (**Figure 4A**)
- Mixed A*02(+) and A*02(-) cell cultures show the ability of Tmod to discriminate between "normal" (A*02[+]) and tumor (A*02[-]) cells (Figure 4B)
- CEA and HLA-A*02 standard plots were generated using CEA expression data from mRNA data (**Figure 4C**)
- CEA Tmod Jurkat or T-cell effective concentration and inhibitory concentration were graphed with the tumor and normal expression values for the CEA and A*02 antigens, along with multiple cell lines

Figure 4. CEA Tmod CAR T Cell (A2B530) In Vitro Study Provides a Therapeutic Safety Window **Comparable to NCI Benchmark CEA NCI TCR [2,6]**

• Histologically confirmed recurrent unresectable, locally advanced, or metastatic NSCLC, CRC, PANC, or other solid tumors associated with CEA expression^b • Received ≥ 1 line of prior therapy

^a May occur at any point in disease course. ^b For patients with CRC or PANC, CEA assessment will be performed retrospectively, and the result is not needed for enrollment.

CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen 5; CRC, colorectal cancer; HLA, human leukocyte antigen; LOH, loss of heterozygosity; NSCLC, non-small cell lung cancer; PANC, pancreatic cancer; PCLD, preconditioning lymphodepletion.

- EVEREST-1 (NCT05736731) is a first-in-human, phase 1/2, multicenter, open-label, nonrandomized study to evaluate the safety and efficacy of a single-dose of A2B530 Tmod CAR T cells in adult patients with metastatic colorectal cancer (CRC), non-small cell lung cancer (NSCLC), pancreatic cancer (PANC), or other solid tumors associated with CEA expression
- Patients are enrolled to EVEREST-1 through BASECAMP-1 (NCT04981119), a master prescreening study that identifies patients with HLA LOH at any time in the course of their disease
- BASECAMP-1 eligible patients undergo leukapheresis and, when clinically appropriate, their banked T cells are used to manufacture A2B530 for the EVEREST-1 study (**Figure 6**)

Figure 7. EVEREST-1 Phase 1 Dose Escalation Study Design

Time

^a If dose de-escalation to dose level -2 occurs and dose level -2 is considered safe, dose escalation of cell dose will be evaluated through dose levels 1-4 with low PCLD. ^b If toxicities are observed relative to medium-dose PCLD, the SRT may recommend reduction to low-dose PCLD without de-escalating the A2B530 dose. Note: All cell dose levels in figure are for a patient <50 kg, any patient <50 kg would receive the previous dose level that was deemed safe in patients <50 kg with the exception of dose level -1, where the patient would

receive half the dose.

MTD, maximum tolerated dose; PCLD, preconditioning lymphodepletion; SRT, safety review team.

• The phase 1 dose escalation portion of the study employs a Bayesian optimal interval design (BOIN) to assess the safety and tolerability of A2B530 and to determine a recommended phase 2 dose (RP2D; Figure 7); 9 to 30 patients will be included in the dose escalation

Inclusion Criteria

 Appropriately enrolled in the BASECAMP-1 A2 Biotherapeutics, Inc. study, with tissue demonstrating LOH of HLA-A*02 by NGS (whenever possible from the primary site), successful apheresis and PBMC processing, and with sufficient stored cells available for

^a Red box used to represent where cell killing occurs.

CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen 5; EC₅₀, half maximal effective concentration; E:T, effector-to-target; HLA, human leukocyte antigen; IC₅₀, half maximal inhibitory concentration; LOH, loss of heterozygosity; NCI, National Cancer Institute; TCR, T-cell receptor; TPM, total particulate matter.

SITE LIST

City of Hope, Duarte, CA

- Principal Investigator: Marwan Fakih, MD
- UCLA Medical Center, Los Angeles, CA
- Principal Investigator: J. Randolph Hecht, MD
- UCSD, San Diego, CA
- Principal Investigator: Sandip Patel, MD
- Moffitt Cancer Center, Tampa, FL
- Principal Investigator: Kedar Kirtane, MD

Mayo Clinic, Rochester, MN

- Principal Investigator: Julian Molina, MD, PhD
- Washington University, St. Louis, MO
- Principal Investigator: Patrick Grierson, MD, PhD
- NYU Langone Medical Center, New York, NY
- Principal Investigator: Salman Punekar, MD
- The University of Texas MD Anderson Cancer Center, Houston, TX
- Principal Investigator: M. Pia Morelli, MD, PhD

- Tmod CAR T-cell therapy
- Histologically confirmed recurrent unresectable, locally advanced, or metastatic CRC, NSCLC, PANC, or other solid tumors associated with CEA expression; measurable disease is required with lesions of >1.0 cm by computed tomography. (Soluble CEA is not acceptable as the sole measure of disease).
- Received previous required therapy for the appropriate solid tumor disease as described in the protocol
- Has adequate organ function as described in the protocol
- Eastern Cooperative Oncology Group performance status 0 to 1
- Life expectancy of ≥ 3 months
- Willing to comply with study schedule of assessments including long-term safety follow-up

Figure 8. EVEREST-1 Study Objectives and Endpoints

Objectives	Primary Endpoints	Secondary Endpoints
 Phase 1: Determine the safety and the optimal dose of A2B530 (after PCLD) in participants with solid tumor disease 	 Phase 1: Rate of adverse events and dose-limiting toxicities by dose levels; recommended phase 2 dose 	 Persistence of A2B530 Cytokine analysis
 Phase 2: Determine the further safety and efficacy of A2B530 	Phase 2: Overall response rate	

PCLD, preconditioning lymphodepletion.

References

- 1. Locke F, et al. N Engl J Med. 2022;386(7):640-654.
- 2. Parkhurst M, et al. *Mol Ther.* 2011;19(3):620-626.
- 3. Tabernero JT, et al. *J Clin Oncol.* 2017;35(15_suppl):3002.
- 4. Hamburger A, et al. *Mol Immunol.* 2020;128:298-310.
- 5. DiAndreth B, et al. Clin Immunol. 2022;241:109030.
- 6. Sandberg ML, et al. Sci Transl Med. 2022;14:eabm0306.
- 7. Borges L, et al. *J Immunol.* 1997;159(11):5192-5196.
- 8. Hecht J, et al. *J Clin Oncol.* 2022; 40(4_suppl):190-190.
- 9. The Cancer Genome Atlas (TCGA) Research Network. Accessed June 2021. https://www.cancer.gov/tcga

Acknowledgments

- The authors would like to thank the following:
- Patients and their families and caregivers for participating in the study
- The screeners, clinical research coordinators, study nurses, data managers,
- and apheresis teams at all of the study sites • Contributions from others at A2 Bio:
- Alexander Kamb, PhD, Founder and Chief Scientific Officer; Agnes E. Hamburger, PhD, Vice President of Discovery Research; Mark L. Sandberg, PhD, Scientific Director of Therapeutic Technology; Sanam Shafaattalab, PhD, Scientist;
- Wendy Langeberg, PhD, MPH, Clinical Development Associate Directo

Medical writing support was provided by Bio Connections, LLC, and funded by A2 Bio. This study was supported by A2 Bio.

